

Initial Investigation of RCS Design on Spacecraft Handling Qualities for Earth Orbit Docking

Randy Bailey, Bruce Jackson, Ken Goodrich (NASA Langley)

Jim Barnes (ARINC)

Al Ragsdale, Jason Neuhaus (Unisys)

Outline

- Introduction
- Background
- Test Description
- Experiment Design
- Results & Discussion
- Concluding Remarks

Introduction

- Handling Qualities (HQ) involve vehicle dynamics, control laws, displays, pilot as a system
- More than just stability & control; includes a measure of pilot workload and task performance
- "Ease and Precision" to perform a task [Cooper & Harper, 1969]
- Worse HQ => increased risk of failure [Hodgkinson, 1995]
- System designers need to know the effect of design decisions upon HQ of a manned vehicle
 - => Design Guidelines or Standards helpful to avoid costly changes later
- Desire to develop HQ standards for NASA, COTS spacecraft
- This Langley test complemented a similar Ames test of determining HQ for docking task for CEV-*like* vehicles; second in series (winter 07-08) of four conducted so far

Background

- Existing handling quality (HQ) standards for fixed-wing and rotary-wing (30+ years)
- No such HQ standards for spacecraft
 - Some heritage Gemini, Apollo reports
 - Used earlier Cooper rating scale; did not assess digital control modes
 - HQ issues discovered late in Shuttle design/testing led to "complex workarounds" that could have been mitigated if discovered earlier
- NASA's new Orion CEV spacecraft to perform automated rendezvous, proximity operations & docking with ISS, lunar surface vehicle
 - Manual crew docking capability must be included (and be Level 1)
- Current CEV RCS design based on trade studies; did not address handling qualities

Translation into Rotation Coupling

If RCS jets and center of mass are not coplanar => coupling of translation command into uncommanded rotation of spacecraft

Vehicle 1: Generic Capsule

- Apollo-sized vehicle with orthogonal thruster arrangement, fired in pairs
- RCS location moved fore-and-aft to change coupling

Vehicle 2: ARC/CEV

From AIAA 2007-6684, "Orion Orbit Reaction Control Assessment," M. Jackson and R. Gonzalez

- CEV-like capsule with canted nozzles, duplicative of NASA Ames simulation model
- Fixed RCS, CM location; is Adverse-coupled
- Early design cycle, not indicative of production vehicle;
 simplified thruster model & control law not true CEV

Fixed-base Simulator Cockpit

- Repurposed twin-engine transport cab, fixed-base; wide-angle collimated display
- Apollo-era translational and rotational hand controllers
- Masked forward view to match CEV-like window geometry
- Aural range callouts every foot with docking sound

Inceptors

Translational Hand Controller

Continuous jet firings when displaced

Rotational Hand Controller

Adds incremental rate when displaced, or continuous fire at full deflection

Centerline Camera Display (head-down)

- Simulated 10 deg fixed field-of-view along the docking port centerline
- Green reticle overlay similar to Shuttle acetate overlay

Test Description - ADI display

Test Variations

Pulse mode: thruster force vs. coupling
 Used with generic spacecraft (veh. 1) with variable coupling
 Varied thruster force (double and half of CEV)

 Two-handed, 6 degree-of-freedom task

Rotational control mode

Used with CEV-*like* spacecraft (veh. 2) with adverse coupling Half of matrix used RCAH (autopilot) for attitudes (single-handed task)

Varied thruster size; turned RCAH autopilot on/off

Evaluation Tasks

- +Vbar docking with ISS
- Three starting locations: 50,
 20, 10 ft from docking
- Offsets of 3 ft lateral/vertical combined
- 0.1 or 0.5 ft/s closure rates; task initialized with this value (Apollo: 1.0 ft/s)
- Orbital effects included (tendency to droop)
- Collected & scored various metrics

Experimental Protocol

- Ten evaluation pilots
 - Five retired astronauts
 - Three active-duty pilot astronauts
 - Two research (aircraft) USNTPS-trained test pilots
- Up to three hours of training/familiarization
- Each task flown at least once for practice and twice for data
 - More runs for practice or data at EP's request
 - Early configurations repeated if obvious learning seen
- Collected Cooper-Harper, TLX, comments

Video

Results: Coupling in Pulse (6 DoF) Mode

- C.L. camera view influenced by both rotation and translation
- Learning curve evident
- Borderline Level 1 Level 2 with Neutral coupling
- Level 2 Level 3 with other coupling (Proverse or Adverse)
- Proverse ratings better than Adverse (but possibly tainted by presentation order and learning curve) due to prioritization
- Doubling of control power => degraded performance and ratings, especially for configurations with coupling
- Task load index (TLX) closely tracked Cooper-Harper (CHR) ratings

Results: Coupling in Pulse (6 DoF) Mode

Results: Coupling in Pulse (6 DoF) Mode

Results: Rotational Control Evaluations

Used Vehicle 2 with adverse coupling; initial response is nonminimum phase

- Rate-command/attitude-hold autopilot (RCAH) adds 'nondeterministic' time delay but improved CHR somewhat
- RCAH attitude deadband made docking somewhat unpredictable
- RCAH gave no appreciable improvement in workload (TLX); compensating for RCAH 'random deadband firing' took a lot of mental effort
- Thruster force variation was not a big effect; slight CHR preference for smaller thrusters (finer control)

Results: Rotational Control Evaluations

Concluding Remarks

- Handling Qualities need to be considered in designing any human-operated vehicle
- Location of RCS thrusters have significant HQ effect (requires mitigation of resulting translation-into-rotation)
- Attitude control autopilot, as tested, did not make task Level 1
- For six-degree-of-freedom task (autopilot off), balancing of rotation and translation authority is important
- Adversely coupled spacecraft will require mitigation to achieve Level 1 CHR in manual dockings.

